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The motion of small, spherical particles of finite size in fluid flows at low Reynolds numbers is described by
the strongly nonlinear Maxey-Riley equations. Due to the Stokes drag, the particle motion is dissipative, giving
rise to the possibility of attractors in phase space. We investigate the case of an infinite cellular flow field with
time-periodic forcing. The dynamics of this system are studied in a part of the parameter space. We focus
particularly on the size of the particles, whose variations are most important in active physical processes, for
example, for aggregation and fragmentation of particles. Depending on their size the particles will settle on
different attractors in phase space in the long-term limit, corresponding to periodic, quasiperiodic, or chaotic
motion. One of the invariant sets that can be observed in a large part of this parameter region is a quasiperiodic
motion in the form of a torus. We identify some of the bifurcations that these tori undergo, as particle size and
mass ratio relative to the fluid are varied. In this way we provide a physical example for sub- and supercritical
pitchfork bifurcations of tori.
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I. INTRODUCTION

For a long time there have been intensive studies of the
chaotic advection of point particles in flows �1–3�. Newer
studies focus on particles of a finite size, instead of point
particles without mass. Based on the early work of Basset �4�
and later Boussinesq �5� and Oseen �6�, equations of motion
for spherical particles of a finite size in a flow at low Rey-
nolds numbers were introduced by Maxey and Riley �7� �the
Maxey-Riley equations�. These equations have been studied
in varying contexts. In many cases the finite-size effects lead
to completely different results compared to what is observed
for ideal tracers �8–13�. In particular, the results depend on
the characteristics of the particles, i.e., whether they are
lighter or heavier than the fluid.

Some of the most important applications of these studies
are in problems where, in addition to the dynamics of the
particles in the flow, active processes of the particles are
included. Such active processes concern the dynamics of the
particles themselves, i.e., they can change their physical and
chemical properties due to various kinds of interaction. Ex-
amples are the study of biological processes �growth of
plankton populations�, chemical processes �chemical reac-
tions in chaotic or turbulent flows�, and physical processes
�aggregation and fragmentation of marine aggregates, e.g.,
sediment particles in the ocean, or cloud formation� �14–19�.
Using the Maxey-Riley equations, the influence of the finite
size of particles on such active processes as autocatalytic
reactions and coalescence of particles has recently been stud-
ied in �20,21�. It has been shown that for particular param-
eters of the flow, chaotic attractors can occur, leading to fila-
mental structures of the particle distribution.

In this paper the Maxey-Riley equations are studied in the
case of an infinite, cellular, time-dependent flow field. Due to
the Stokes drag the particle motion is dissipative, giving rise
to the possibility of attractors in phase space. The observed
system behavior is highly complex and depends strongly on
the parameter values. Different forms of periodic, quasiperi-

odic, and chaotic behavior appear in the system, with both
single attractors and parameter regions possessing multista-
bility. Some particular attractors and parameter regions have
already been discussed by, e.g., Maxey �8�, Yu et al. �22�,
and Nishikawa et al. �20�. Others have not been studied yet.
Because of the complexity and the number of parameters that
can be varied �a total of six parameters�, only a part of the
parameter space, namely, the variation of two parameters, is
studied in this paper. These two parameters are chosen for
their relevance in the context of application in active physi-
cal processes. In particular, we are interested in the type of
long-term behavior that occurs for different sizes and masses
of the particles. Since active processes like aggregation and
fragmentation change the size of the particles, it is interest-
ing to study the impact of variations in the size on the dy-
namics of the particles.

For particles both heavier and lighter than the fluid, qua-
siperiodic solutions in the form of a torus can be observed in
a large parameter region. In this paper, we study some of the
changes that these tori undergo, as parameters are varied.
The main focus is on pitchfork bifurcations of tori that ap-
pear in this context.

While there is a large body of work devoted to the study
of bifurcations of fixed points and periodic orbits in various
fields of science, there are only a few examples from appli-
cation where bifurcations of tori occur. Some general results
are known from the mathematical literature concerning the
bifurcations of tori �23� and particularly the breakup of tori
and the transition to chaos �24,25�. These theoretical findings
are accompanied by numerical studies of paradigmatic sys-
tems �26–28�. Examples from physics are mainly focused on
the possibility of the emergence of tori with three incommen-
surate frequencies T3 �29–33� and the breakup of tori with
two incommensurate frequencies T2 �34–36�. The more basic
bifurcation of a torus studied here has to our knowledge not
yet been observed in a physical system and is known only
from a mathematical point of view �e.g., Sun �37��. For par-
ticles moving in a fluid flow, two kinds of pitchfork bifurca-
tions of a torus can be obtained in different parameter inter-
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vals. First, we find a subcritical pitchfork bifurcation, where
an unstable torus becomes stable and gives rise to the emer-
gence of two new unstable tori. Second, a supercritical pitch-
fork bifurcation is observed, where a stable torus becomes
unstable and two new stable tori are created. While the first
bifurcation happens only if the particles are lighter than the
fluid, the second one occurs for particles heavier than the
fluid. In contrast to the usual transition from sub- to super-
critical, which appears on the same bifurcation line, we find
no continuous connection between the two bifurcations.

The paper is organized as follows. In Sec. II the equations
of motions are presented. Based on the Maxey-Riley equa-
tions, the complete equations of motion for small spherical
particles in a time-dependent flow field are recalled and some
basic properties of the system are described, following the
approach in �21�. Section III gives a general overview of the
system behavior depending on the size of the particles and of
the part of the parameter space that is of relevance to the
pitchfork bifurcation presented here. In Sec. IV A the results
from numerical simulations are described that show a super-
critical pitchfork bifurcation of a torus. Section IV B shows
the numerical results for a subcritical pitchfork bifurcation of
a torus. Section V contains a brief summary.

II. SYSTEM OF EQUATIONS

Our investigation is based on the motion of small rigid
spherical particles in a two-dimensional, time-periodic flow
field under the influence of gravity. The flow field consists of
a regular pattern of vortices, or roll cells, that is infinitely
extended. This flow field was first introduced by Chan-
drasekhar �38� as a solution to the Bénard problem, but has
also been used in different contexts since then �e.g., �39,8��.

The undisturbed flow field is denoted by u��x� , t�, where x�
= �x1 ,x2� is a position in the flow field. The flow is incom-
pressible, with constant density �, pressure p, and dynamical
viscosity � of the fluid. Since we restrict ourselves to a two-
dimensional flow it can be represented by a stream function

��x�,t� = �1 + k sin��t��
U0L

�
sin��x1/L�sin��x2/L� .

�2.1�

U0 is the maximum velocity of the flow for a given time t, k
is the amplitude of the periodic forcing, and � is the fre-
quency. The size of a vortex is L.

The velocity field u��x� , t�= (u1�x� , t� ,u2�x� , t�) of the fluid at
the position x� is derived from the stream function in Eq. �2.1�
by

ui = ��� � �� �i, i = 1,2, �2.2�

with �� = �0,0 ,��.
The equations of motion for a particle in the flow de-

scribed in Eq. �2.1� were derived by Yu et al. �22�. A brief
summary, following the description of Nishikawa et al. �21�,
is shown here for completeness.

The basic equations of motion for the dynamics of a small
rigid spherical particle of mass mp and radius a in an incom-

pressible flow for low Reynolds numbers are the Maxey-
Riley equations �7�,

mp
dV�

dt
= �mp − mF�g� + mF�Du�

Dt
�

X� �t�

−
1

2
mF

d

dt
�V� − u�„X� �t�,t… −

1

10
a2�2u�„X� �t�,t…�

− 6�a�Y� �t� − 6�a2��
0

t

d�
1

	�	�t − ��
d

d�
Y� ��� .

�2.3�

The position of the particle is denoted by X� = �X1 ,X2�, the

particle velocity is V� = �V1 ,V2�, and Y� �t�=V� �t�−u�(X� �t� , t)

− 1
6a2�2u�(X� �t� , t). mF is the mass of the displaced fluid, 	 is

the kinematic viscosity, and g� =ge�x2
is the gravitational ac-

celeration, where e�x2
is the unit vector in the x2 direction.

These equations are derived for the conditions

aW0/	 
 1, �2.4�

�a2/	��U0/L� 
 1, �2.5�

a/L 
 1, �2.6�

where W0 is a representative velocity scale for �V� −u��.
It is important to distinguish between

Du�

Dt
=

�u�

�t
+ �u� · �� �u� , �2.7�

the Lagrangian �substantial� derivative, taken along the tra-
jectory of a fluid element, and

du�

dt
=

�u�

�t
+ �V� · �� �u� , �2.8�

the derivative taken along the trajectory of the particle.
The term

mF�Du�

Dt
�

X� �t�

is the force from the undisturbed fluid acting on the particle
at position X�t�. The buoyancy force is given by

�mp − mF�g� .

The term

−
1

2
mF

d

dt
�V� − u�„X� �t�,t… −

1

10
a2�2u�„X� �t�,t…�

represents the added mass effect. This term expresses the fact
that an inertial particle brings a certain amount of fluid into
motion too.

The Stokes drag force −6�a�Y� �t� is proportional to the

difference between the particle velocity V� �t� and the fluid
velocity u��x� , t�. The term
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− 6�a2��
0

t

d�
1

	�	�t − ��
d

d�
Y� ���

is the Boussinesq-Basset history term, representing the ef-
fects of the diffusion of vorticity around the particle. This
term will be neglected in the following. Manton �40� showed
that, if fluid inertia effects are included, the Basset history
term is of less significance.

The terms with a2�2u� are the Faxen corrections for the
nonuniform flow. For the flow field u� described by Eq. �2.1�,
the Faxen corrections are

a2�2u� = −
2a2u�

L2 . �2.9�

In this case the Faxen corrections decrease u� by only a small
amount, which is proportional to �a /L�2. Because of �2.6�
this term is small and will not affect the qualitative behavior
of the system. The Faxen corrections are therefore neglected.

Taking all this into consideration, the equations of motion
for the inertial particles are reduced to

�mp +
mF

2
�dV�

dt
= �mp − mF�g� + 6�a��u��X� ,t� − V� �

+ mF�u� · �� �u� +
1

2
mF�V� · �� �u� +

3

2
mF

�u�

�t
.

Introducing dimensionless variables

X� � =
X�

L
, V� � =

V�

U0
, u�� =

u�

U0
, t� =

tU0

L
, �2.10�

and defining

R ª

mF

mp + mF/2
,

A ª

R

2
B =

R

2

6�a�L
1
2mFU0

,

W� ª � 1

R
−

3

2
�Qe�x2

= � 1

R
−

3

2
� mF

6�a�U0
ge�x2

�2.11�

leads to the dimensionless equations of motion �the asterisks
are suppressed for convenience�

dV� �t�
dt

= A�u� − V� + W� � + R�u� +
1

2
V�� · �� u� +

3

2
R

�u�

�t
.

�2.12�

The parameter A represents the effect of the particle inertia.
R is the mass ratio parameter between the fluid and the par-
ticle. Systems with R�

2
3 correspond to particles heavier than

the fluid �aerosols� and R
2
3 corresponds to particles lighter

than the fluid �bubbles�. R→0 is the aerosol limit, where mp
tends to infinity, compared to mF. R→2 is the bubble limit,
where mp tends to 0, compared to mF. R= 2

3 corresponds to

particles that are neutrally buoyant. The parameter W� is the

scaled particle settling velocity for a still fluid. W� is positive
for bubbles and negative for aerosols.

Substituting

�� =
�L

U0
,

�� =
�

U0L
,

and again suppressing the asterisks yields the dimensionless
stream function

�„x1�t�,x2�t�,t… =
1

�
�1 + k sin��t��sin��x1�sin��x2� . �2.13�

The dimensionless velocity field can then be derived as

u�„x��t�,t… =

��„x��t�,t…

�x2

−
��„x��t�,t…

�x1

�
= �1 + k sin��t��� sin��x1�cos��x2�

− cos��x1�sin��x2�
� . �2.14�

Combining �2.14� with Eq. �2.12� results in the full equations
of motion

dX1

dt
= V1, �2.15�

dX2

dt
= V2, �2.16�

dV1

dt
= − AV1 + A�1 + k sin��t��sin��X1�cos��X2�

+
R

2
��1 + k sin��t���V1 cos��X1�cos��X2�

− V2 sin��X1�sin��X2��

+
1

2
R��1 + k sin��t��2sin��X1�cos��X1�

+
3

2
R�k cos��t�sin��X1�cos��X2� , �2.17�

dV2

dt
= − AV2 − A�1 + k sin��t��cos��X1�sin��X2�

+
R

2
��1 + k sin��t���V1 sin��X1�sin��X2�

− V2 cos��X1�cos��X2��

+ AW +
1

2
R��1 + k sin��t��2sin��X2�cos��X2�

−
3

2
R�k cos��t�cos��X1�sin��X2� . �2.18�
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The dynamics of the system of equations �2.15�–�2.18� takes
place in a five-dimensional phase space �two positions, two
velocities, and time�. Because of the periodic forcing we
consider a stroboscopic map M of the system with the period
T of the forcing. This map projects the dynamics onto a
four-dimensional phase space.

The dynamics in this four-dimensional phase space is dis-
sipative. Calculation of the divergence of the flow defined by
Eqs. �2.15�–�2.18� yields that an element of the phase space
R4 shrinks exponentially with e−2At. Therefore, attractors can
be found in this system. These attractors occur in the whole
phase space, but in the following only their projections onto
the configuration space are shown.

The dimensionless stream function Eq. �2.1� has a spatial
period of 2. This spatial period results in a periodic structure
of the phase space, with the same period. This periodic struc-
ture of the phase space is reflected in the invariant sets. It can
be easily seen that for every invariant set of equations
�2.15�–�2.18� there is an infinite number of identical invari-
ant sets, repeated with the same spatial period 2 throughout
the phase space. Furthermore, if (X1�t� ,X2�t� ,V1�t� ,V2�t�) is
an invariant set of equations �2.15�–�2.18�, an identical in-
variant set can be found with each of the transformations
�X1→2−X1 ;V1→−V1�, �X1→1−X1 ;X2→1+X2 ;V1→−V1�,
and �X1→1+X1 ;X2→1+X2�. It is therefore sufficient to
consider the map M restricted to the unit cell F= �0,1�
� �0,1��R2, with R2 being the velocity components. Using
the transformations above, every invariant set in F can be
extended to the whole phase space. In the figures shown in
this paper, the invariant sets are already extended from the

unit cell F to the interval F̃= �0,1�� �0,2��R2. By extend-

ing the sets to F̃ it is easier to see what the invariant sets look

like in the whole phase space, because starting with F̃ the
sets can be extended in the X1 direction by a simple reflec-
tion along the axes X1=0 ,1 and in the X2 direction by iden-
tifying X2=0 and X2=2. Only the projections of this interval
onto the configuration space �X1 ,X2� are shown.

In addition to the parameters R, A, and W, we introduce a
size class parameter � for the particles. The size class param-
eter � describes how the radius and mass of a particle are
connected to the radius and mass of a basic particle with
radius a0 and mass m0. We assume that all particles are
spherical and have a mass and volume that are the sums of
the masses and volumes of a number � of the basic particles.
For the radius and the mass of a particle of class �, this
yields a�=	3�a0 and m�=�m0 �with m=mp or m=mF�. For
the equations of motion of the particles, this results in a
change of the parameter A to A�=�−2/3A and a change of the
parameter W to W�=�2/3W.

In the following the parameter values B=6.4, Q=−1.6,
k=2.72, and �=� are chosen to allow a comparison with
results by, e.g., Nishikawa et al. �21�. The period of the forc-
ing is therefore T=2. The parameters R and � are varied.

Additionally A and W� change accordingly when varying R
and �.

III. GENERAL BEHAVIOR

According to the aim of our study we are interested in the
qualitative behavior of the nonlinear system described by

Eqs. �2.15�–�2.18�. Depending on the system parameters, we
can distinguish different kinds of long-term dynamics, such
as periodic orbits and quasiperiodic and chaotic motion. Our
goal is to identify the occurring invariant sets, both stable
and unstable ones, and to analyze the bifurcations leading to
changes in the long-term behavior. As already mentioned in
the Introduction, aggregation and fragmentation change the
size of the particles. Even though we do not take these pro-
cesses explicitly into account and deal only with the dynam-
ics of passive tracers, we focus on the size of the particles as
the most important bifurcation parameter. We find that the
dynamics of the particles depends strongly on their size, i.e.,
different invariant sets are obtained for different sizes. Addi-
tionally we obtain an interesting bifurcation that we study in
more detail. Before investigating this bifurcation we present
the overall picture of qualitative behavior in some parts of
the parameter space.

Since the system cannot be solved analytically, numerical
calculations are required to find the invariant sets corre-
sponding to different long-term dynamics. Attractors can be
easily found by examining the long-term simulations of the
particle dynamics. Unstable invariant sets are harder to find
due to their saddle-type character. Estimates are made by
starting very close to the unstable invariant sets and then
examining the short-term behavior. To get a starting point
close to the unstable invariant set, a refinement procedure
has been applied to minimize the distance to the unstable
invariant set. We follow the basic idea of the proper interior
maximum �PIM� triple method, which has been developed to
compute chaotic saddles �41�. We start with a set of initial
conditions along a line with fixed X2, V1, and V2 but varying
X1. Since the unstable invariant set and its stable manifolds
separate the basins of attraction of different stable invariant
sets, we integrate all initial conditions until they reach one of
the attractors. Then we take the initial condition, say I2,
which �i� lies between two initial conditions I1 and I3 con-
verging to different attractors and �ii� possesses the maxi-
mum time needed to reach the attractor �the PIM for the
transient time�. This point I2 is then taken as a starting point
for the unstable invariant set. If the transient time is not long
enough, so that I2 is not close enough to the invariant set,
then the whole procedure is repeated with a line of initial
conditions connecting I1 and I3.

The qualitative behavior of the system is highly depen-
dent on the parameter values. In total there are six param-
eters involved that can be varied. Because of the number of
different invariant sets that occur for variations of each of
these parameters, no attempt is made to give a complete
description of all the invariant sets and bifurcations occur-
ring in the whole parameter space. Thus we focus on the
variation of a few parameters and keep the others fixed.

As already mentioned the size class parameter � will be
the main control parameter to be varied. In addition we study
the behavior for particles with different mass ratios com-
pared to the fluid, i.e., for different values of R. According to
Eq. �2.11� the variation of R also implies a variation of the

parameters A and W� .
In Fig. 1 �upper panel� and Fig. 2 �upper panel� bifurca-

tion diagrams �varying �� for two different values of R are
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shown. Figure 1 is in the bubble region, with R
2
3 , while

Fig. 2 is in the aerosol region, with R�
2
3 . Both bifurcation

diagrams look rather complicated. For different size classes
�, we observe different long-term dynamics, in particular
periodic, quasiperiodic, and chaotic motion. Varying the size
classes we find various bifurcations, indicating transitions
between different types of motion. Looking only at the pro-
jections of the trajectories it is not possible to distinguish
between quasiperiodic and chaotic motion. Such a distinction
requires the computation of the Lyapunov exponents, which
are presented in Fig. 1 �lower panel� and Fig. 2 �lower
panel�, respectively. The computation of the Lyapunov expo-
nents is based on the algorithm developed by Shimada and
Nagashima �42�, which allows for the computation of the
whole spectrum of Lyapunov exponents separately for each
attractor occurring in the system. It is important to note that
the figure showing the Lyapunov exponents indicates for
each parameter value always the largest occurring Lyapunov
exponents in the system, computed for a set of 30 different
initial conditions. This means that, even though the
Lyapunov exponents are shown as a smooth curve, they can
correspond to different attractors. Such a visualization has
been chosen to emphasize always the most complex motion
that can be found for a particular parameter value.

Based on simulations and Lyapunov exponents, we can
immediately identify period doubling, e.g., at R=1,�
�4.44 and R=0.5,��6.8, transitions to chaos, e.g., at R
=1,��4.68 and R=0.5,��6.92, and torus bifurcations,

e.g., at R=1,��0.5 and R=0.5,��0.248 �compare Fig. 5
�lower panel� and Fig. 8 �lower panel��. Intermittency can be
expected at, e.g., R=1,��2.85. This is closely related to the
emergence of periodic windows within the chaotic parameter
ranges.

Within the considered parameter range, we find regions
where only a single attractor occurs and regions with multi-
stability where several attractors coexist for the given set of
parameter values, as, e.g., seen for �� �5.2,5.7� for R=0.5.
In the latter regions it depends crucially on the initial condi-
tions which of these stable states is realized. Each of these
coexisting attractors has its own basin of attraction. For
many of the considered parameter ranges, these basins have a
complexly interwoven structure leading to a very high sen-
sitivity of the final state to initial conditions �see, for ex-
ample, Fig. 3�. In the following the basins of attraction
shown are computed as two-dimensional cross sections of
the complete four-dimensional basins of attraction for initial
conditions with �X1 ,X2�� �0,1�� �0,2� and �V1 ,V2�= �0,0�.

From the physical point of view, we note that particles of
different size behave differently in the same flow, i.e., their
motion is on distinct attractors. As a consequence one will
find the particles belonging to different size classes at differ-
ent locations in the flow. We also note that bubbles and aero-
sols of the same size exhibit different behavior as well.

From all the occurring bifurcations we choose the torus
pitchfork bifurcation for a detailed analysis, since to our
knowledge it has not been discovered in this context of ap-

FIG. 1. Bifurcation diagram for particles lighter than the fluid
�mass ratio parameter R=1�. Upper panel: Projection of attractors in
one dimension of configuration space. Lower panel: Numerical es-
timates of the two largest Lyapunov exponents �1 �solid line� and
�2 �dashed line�.

FIG. 2. Bifurcation diagram for particles heavier than the fluid
�mass ratio parameter R=0.5�. Upper panel: Projection of attractors
in one dimension of configuration space. Lower panel: Numerical
estimates of the two largest Lyapunov exponents �1 �solid line� and
�2 �dashed line�.
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plication so far. Therefore, we restrict ourselves to the pa-
rameter region �� �0,1� and R� �0.4,1.1�. This parameter
interval covers parts of the bubble region and of the aerosol
region in parameter space where tori and their bifurcations
can be observed. Both a supercritical and a subcritical pitch-
fork bifurcation of these tori can be observed. Note that we
study the stroboscopic map M in which the quasiperiodic
motion on a torus in the original flow appears as an invariant
curve.

In the supercritical pitchfork bifurcation a stable torus
loses its stability and two new stable tori are created. Such a
bifurcation has been studied in the quasiperiodically forced
circle map �43�. There, this bifurcation simply occurs be-
cause the quasiperiodic forcing turns the normal pitchfork
bifurcation of fixed points �periodic orbits of period 1� into a
pitchfork bifurcation of invariant curves in the map, corre-
sponding to tori in flows.

The subcritical pitchfork bifurcation of tori follows a dif-
ferent scenario. An unstable torus becomes stable and two
unstable tori are created which coexist with the stable torus.
Though proofs of existence for both of these bifurcations are
known from the mathematical literature �Broer et al. �23�,
Sun �37�� they have not been analyzed in detail in the context
of a physical application.

Let us now discuss the occurrence of the pitchfork bifur-
cation of tori in the two-dimensional parameter space
spanned by R and �. First we note that the pitchfork bifur-
cation of tori occurs in the bubble region as well as in the
aerosol region, but there is a fundamental difference between
them. In the aerosol region �R�

2
3

�, the pitchfork bifurcation
of a torus is always supercritical, giving rise to the emer-
gence of two stable tori. The pitchfork bifurcation of a torus
in the bubble region �R

2
3

� is always subcritical, with two
unstable tori branching off.

There is a gap between the two bifurcation curves marked
by the line R= 2

3 , where the particles are neutrally buoyant, so
that there is no continuous transition from sub- to supercriti-

cal as known for many other bifurcations. The two stable tori
that are found in the aerosol region after the pitchfork bifur-
cation disappear in a Neimark-Sacker bifurcation at R= 2

3
when R is increased �dashed line in Fig. 4�. There each of the
stable tori merges with an unstable periodic orbit. At that
point the tori disappear and the periodic orbits become
stable. At the same point the spatial symmetry of the unstable
torus is reversed �compare Figs. 6 and 9�.

The different cases occurring in this parameter region are
described in detail in the following section. Both the stable
and the unstable invariant sets are estimated numerically and
their projections onto the configuration space are shown.

IV. PITCHFORK BIFURCATION OF TORI

A. Supercritical pitchfork

In this section the aerosol region of the part of the param-
eter space shown in Fig. 4 is analyzed. In this parameter
region a supercritical pitchfork bifurcation of a torus is ob-
served. The corresponding enlarged bifurcation diagram for
R=0.5 is presented in Fig. 5. A solid line in the X1 direction
for a fixed � indicates a stable torus or chaos, while indi-
vidual points indicate a stable periodic invariant set.

For small values of � the only stable attractor in phase
space is a single torus. In addition there exist two unstable
periodic orbits of period T. An illustration of this can be seen
in Fig. 6 �upper panel� for �=0.2. All particles end up on the
torus. Note that Fig. 6 shows the Poincaré section; therefore
the torus appears as an invariant curve and the periodic orbits
as fixed points. In this aerosol region the torus, and therefore
the motion of the particles, tends to go through the local
downflow regions.

When � is increased, a bifurcation of the stable torus
takes place at �crit�0.2475. The stable torus splits into two
stable tori, with an unstable torus separating the stable tori
�see Fig. 6 �lower panel� for �=0.28�. This is a supercritical
pitchfork bifurcation of a torus. This change can also be seen
in the Lyapunov exponents �Fig. 5 �lower panel��, where the
smaller Lyapunov exponent also becomes zero at the bifur-
cation point.

FIG. 3. Black and white dots indicate basins of attraction of two
different period-2T orbits for R=1 and �=4. The period-2T orbits
occur in the whole region �0,2�� �0,2�, i.e., particles on these or-
bits move from one unit cell to the next �in the x1 direction� and
then back. The basins of attraction display a complex interwoven
structure. To emphasize the complicated fractal structure we show
in the figure only the part �0,1�� �0,2� of the configuration space;
the part �1,2�� �0,2� is symmetric to the one shown.

FIG. 4. Part of the parameter space spanned by size class pa-
rameter � and mass ratio parameter R, where the pitchfork bifurca-
tion of a torus occurs. Solid lines indicate a pitchfork bifurcation
�supercritical in the aerosol region, subcritical in the bubble region�.
The dashed line marks a torus bifurcation at the border between the
aerosol and bubble regions �at R=2 /3�.
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Beyond the pitchfork bifurcation it depends on the initial
condition to which torus the particles converge to. The un-
stable torus can also be seen in the basins of attraction of the
stable tori, as it makes up the basin boundary together with
its stable manifolds �Fig. 7�.

Beyond the pitchfork bifurcation the behavior gets more
complicated, as parameter regions with various phase lock-
ings on the unstable and stable tori are encountered. Some of
the larger regions with phase locking on the stable tori can be
seen in the bifurcation diagram �Fig. 5�, for example, at �
�0.268 and 0.305, where the zero Lyapunov exponent be-
comes negative. The parameter regions with phase locking
are separated by large parameter regions of stable tori with-
out phase locking.

For lower values of R �R�0.4�, the behavior of the sys-
tem is also much more involved and will not be examined in
detail here. In this region, a number of bifurcations, in par-
ticular phase lockings, occur on the torus before the pitch-
fork bifurcation. This gives rise to a complex series of bifur-
cations, which will be presented elsewhere.

If R is increased and comes closer to the bubble region
�R→ 2

3
�, another bifurcation of the stable tori can be ob-

served. The two stable tori that were created in the pitchfork
bifurcation move closer to the unstable periodic orbits and
finally disappear in a Neimark-Sacker bifurcation �dashed

line in Fig. 4�. There the periodic orbits become stable. All
particles now move to one of these two periodic orbits, with
their basins of attraction separated by the remaining unstable
torus.

B. Subcritical pitchfork

Now we analyze the bifurcation scenarios in the other part
of the parameter space, namely, the bubble region with R


2
3 . The dynamics is dominated by two stable fixed points,

whose basins of attraction are separated by an unstable torus.
However, the symmetry of the torus is reversed, with the
torus now going through the regions with local upflow. As
shown in Fig. 4 we find again a pitchfork bifurcation line for

FIG. 5. Bifurcation diagram and numerical estimates of the two
largest Lyapunov exponents for R=0.5, in the area of the supercriti-
cal pitchfork bifurcation. The arrow indicates the bifurcation point
at �crit=0.2475. Beyond the bifurcation point some larger periodic
windows, corresponding to phase lockings on the tori, can be easily
seen. These periodic windows appear where the largest Lyapunov
exponent drops suddenly below 0, e.g., at ��0.268. This is also
visible in the bifurcation diagram �upper panel�.

FIG. 6. Supercritical pitchfork bifurcation of a torus at R=0.5
�solid line, stable torus; dashed line, unstable torus; crosses, un-
stable periodic orbit�. Upper panel: Before the bifurcation ��
=0.2�. Lower panel: After the bifurcation ��=0.28�.

FIG. 7. Basins of attraction for the two stable tori for R=0.5 and
�=0.325. The basins of attraction are separated by an unstable
torus.
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a torus, but in the bubble region this pitchfork bifurcation is
subcritical.

Let us discuss the bifurcation diagram for R=1 �Fig. 8� in
the vicinity of the bifurcation. For small � values the long-
term dynamics yields two periodic orbits of period T. In
addition the dynamics show the existence of an unstable
torus �see Fig. 9 �upper panel��. The basins of attraction of
the periodic orbits are separated by the unstable torus, result-
ing in a smooth basin boundary.

At �crit�0.4996 the unstable torus undergoes a bifurca-
tion. The unstable torus becomes stable, with two new un-
stable tori branching off �see Fig. 9 �lower panel� for �
=0.51�. This is a subcritical pitchfork bifurcation of a torus.
In the bifurcation diagram �Fig. 8�, this transition is mani-
fested by the abrupt appearance of the quasiperiodic motion
indicated by the black area beyond the critical parameter
value. The change can also be seen in the Lyapunov expo-
nents, where the largest exponent �1 now is equal to zero
�compare Fig. 1 �lower panel��.

There are now three possible states for the long-term dy-
namics, with the actual result for a particle depending on the
initial conditions. Once again, the unstable tori form the bor-
ders of the basins of attraction. In this case, the unstable tori
separate the basins of attraction of the stable torus from the
basins of attraction of the two periodic orbits �Fig. 10�. Here,
the basin boundary is again smooth.

For different values of �, the system shows a number of
other interesting types of behavior, but the analysis of these
is beyond the scope of this paper and is left for further stud-
ies. Some examples include a series of phase lockings on the

unstable torus and subsequent pitchfork bifurcations of the
resulting periodic orbits in the interval �� �0.41,0.45�,
emergence of other stable periodic solutions ��0.6�, and a
breakup of the stable torus at �=1 �see �21�� that gives rise
to a chaotic attractor with fractal basin boundaries.

V. SUMMARY

We have investigated the dynamics of passive finite-size
particles in a fluid flow at low Reynolds numbers. It was
found that the dynamics of such particles can vary greatly
with their size and also with their mass relative to the fluid.
For different parameter regions, periodic, quasiperiodic, or
chaotic motion was observed. When considering sets of par-
ticles belonging to different size classes and advected by the

FIG. 8. Bifurcation diagram and Lyapunov exponents for R=1,
in the area of the subcritical pitchfork bifurcation.

FIG. 9. Subcritical pitchfork bifurcation of a torus at R=1 �solid
line, stable torus; dashed line, unstable torus; bullets, stable periodic
orbit�. Upper panel: Before the bifurcation ��=0.4992�. Lower
panel: After the bifurcation ��=0.51�.

FIG. 10. Basins of attraction of the stable torus �white� and the
fixed points �black� for R=1,�=0.51. The basins of attraction are
separated by the two unstable tori.
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same flow, finite-size particles will settle on different attrac-
tors depending on their size. That means that, in systems
where aggregation and fragmentation processes take place,
the particles of different size will concentrate in different
areas of the configuration space. In the case when the time
span between the aggregation and fragmentation events is
long compared to the time needed to approach the attractor,
the particles will be distributed according to their respective
attractors. But in most cases one has to expect that aggrega-
tion and fragmentation will happen more frequently, so that
the transient dynamics will blur the separation of different
size particles in different attractors.

For small size classes we find a parameter range where
the dynamics is dominated by quasiperiodic attractors for
particles lighter and heavier than the fluid. This quasiperiodic
motion in the form of a torus has been studied in more detail.
The torus undergoes both a sub- and a supercritical pitchfork
bifurcation, depending on the mass of the particles relative to
the fluid. For particles lighter than the fluid the bifurcation is
always subcritical, while for particles heavier than the fluid
the bifurcation is supercritical. No continuous transition be-
tween these two bifurcations exists in this system; instead,
the transition between the different states happens via a
Neimark-Sacker bifurcation where the two stable tori emerg-
ing in the supercritical pitchfork bifurcation disappear. This
Neimark-Sacker bifurcation forms a boundary at the line R
= 2

3 of neutrally buoyant particles, separating the different
invariant sets observed for both kinds of pitchfork bifurca-
tions.

At this line of neutrally buoyant particles, the symmetry
of the unstable torus is reversed �compare Fig. 6 �upper

panel� and Fig. 9 �upper panel��. This change in the symme-
try can be easily understood from a physical point of view.
Particles lighter than the fluid get suspended at the stable
fixed points for long times, but for short times �if they start
close to the unstable torus� move upward through the flow.
The torus therefore lies in the regions with local upflow.
Particles heavier than the fluid sink through the fluid; the
torus lies in regions with local downflow. At the line R= 2

3
particles neither rise nor sink through the flow; instead they
collect in the region with only horizontal fluid velocity, i.e.,
here the tori become a horizontal line at the border of each
unit cell �x2=0 ,1 ,2�.

For R very close to 2
3 , the line of supercritical pitchfork

and the line of Neimark-Sacker bifurcations seem to touch
tangentially in a bifurcation of higher codimension. But the
appearance of higher-codimension bifurcations is beyond the
scope of this paper. Additionally, for low and high values of
R �R�0.4,R1.1�, other bifurcations occur which are re-
lated to a phase locking on the torus under consideration,
giving rise to a complex network of bifurcation lines in pa-
rameter space. As a result, a system of finite-size particles
moving in a fluid flow provides an example of a sub- and
supercritical pitchfork bifurcation of a torus in a realistic
physical system.
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